skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Genestreti, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract “Electron-only” reconnection, which is both uncoupled from the surrounding ions and much faster than standard reconnection, is arguably ubiquitous in turbulence. One critical step to understanding the rate in this novel regime is to model the outflow speed that limits the transport of the magnetic flux, which is super ion Alfvénic but significantly lower than the electron Alfvén speed based on the asymptotic reconnecting field. Here we develop a simple model to determine this limiting speed by taking into account the multiscale nature of reconnection, the Hall-mediated electron outflow speed, and the pressure buildup within the small system. The predicted scalings of rates and various key quantities compare well with fully kinetic simulations and can be useful for interpreting the observations of NASA’s Magnetospheric-Multiscale (MMS) mission and other ongoing missions. 
    more » « less
  2. Abstract Magnetic reconnection is a ubiquitous plasma process that transforms magnetic energy into particle energy during eruptive events throughout the universe. Reconnection not only converts energy during solar flares and geomagnetic substorms that drive space weather near Earth, but it may also play critical roles in the high energy emissions from the magnetospheres of neutron stars and black holes. In this review article, we focus on collisionless plasmas that are most relevant to reconnection in many space and astrophysical plasmas. Guided by first-principles kinetic simulations and spaceborne in-situ observations, we highlight the most recent progress in understanding this fundamental plasma process. We start by discussing the non-ideal electric field in the generalized Ohm’s law that breaks the frozen-in flux condition in ideal magnetohydrodynamics and allows magnetic reconnection to occur. We point out that this same reconnection electric field also plays an important role in sustaining the current and pressure in the current sheet and then discuss the determination of its magnitude (i.e., the reconnection rate), based on force balance and energy conservation. This approach to determining the reconnection rate is applied to kinetic current sheets with a wide variety of magnetic geometries, parameters, and background conditions. We also briefly review the key diagnostics and modeling of energy conversion around the reconnection diffusion region, seeking insights from recently developed theories. Finally, future prospects and open questions are discussed. 
    more » « less
  3. Abstract The rate of magnetic reconnection is of the utmost importance in a variety of processes because it controls, for example, the rate energy is released in solar flares, the speed of the Dungey convection cycle in Earth’s magnetosphere, and the energy release rate in harmful geomagnetic substorms. It is known from numerical simulations and satellite observations that the rate is approximately 0.1 in normalized units, but despite years of effort, a full theoretical prediction has not been obtained. Here, we present a first-principles theory for the reconnection rate in non-relativistic electron-ion collisionless plasmas, and show that the same prediction explains why Sweet-Parker reconnection is considerably slower. The key consideration of this analysis is the pressure at the reconnection site (i.e., the x-line). We show that the Hall electromagnetic fields in antiparallel reconnection cause an energy void, equivalently a pressure depletion, at the x-line, so the reconnection exhaust opens out, enabling the fast rate of 0.1. If the energy can reach the x-line to replenish the pressure, the exhaust does not open out. In addition to heliospheric applications, these results are expected to impact reconnection studies in planetary magnetospheres, magnetically confined fusion devices, and astrophysical plasmas. 
    more » « less
  4. Abstract We analyze a magnetotail reconnection onset event on 3 July 2017 that was observed under otherwise quiescent magnetospheric conditions by a fortuitous conjunction of six space and ground‐based observatories. The study investigates the large‐scale coupling of the solar wind–magnetosphere system that precipitated the onset of the magnetotail reconnection, focusing on the processes that thinned and stretched the cross‐tail current layer in the absence of significant flux loading during a 2‐hr‐long preconditioning phase. It is demonstrated with data in the (a) upstream solar wind, (b) at the low‐latitude magnetopause, (c) in the high‐latitude polar cap, and (d) in the magnetotail that the typical picture of solar wind‐driven current sheet thinning via flux loading does not appear relevant for this particular event. We find that the current sheet thinning was, instead, initiated by a transient solar wind pressure pulse and that the current sheet thinning continued even as the magnetotail and solar wind pressures decreased. We suggest that field line curvature‐induced scattering (observed by magnetospheric multiscale) and precipitation (observed by Defense Meteorological Satellite Program) of high‐energy thermal protons may have evacuated plasma sheet thermal energy, which may require a thinning of the plasma sheet to preserve pressure equilibrium with the solar wind. 
    more » « less